Расчет на всплытие подземных сооружений

Март 2020 года

Проектирование подземного гаража и других отдельно стоящих подземных сооружений в заболоченной местности требует проверки на всплытие.

Проектирование заглубленных сооружений в заболоченной местности сопряжено с трудностями.

Водоотведение и дренаж не всегда могут надежно отвести грунтовые воды, особенно в долговременной перспективе эксплуатации проектируемого объекта.

При высоком уровне грунтовых вод возможно «всплытие» проектируемого объекта, если вес его конструкций окажется меньше веса вытесняемой воды (объем конструкции ниже уровня грунтовых вод в м3 надо перемножить на вес 1 м3 воды), а мероприятия по закреплению в грунте окажутся не эффективными.

Вы можете сказать – бетонные конструкции всплыть не могут – но тогда вспомните про железо-бетонные корабли начала 20 века.

В настоящее время, заглубленные конструкции типа гаража, бункера или специальных емкостей проверяют на всплытие, если нет гарантии, что уровень грунтовых вод не вытолкнет их на поверхность.

ОТДЕЛЬНО СТОЯЩИЙ ПОДЗЕМНЫЙ ГАРАЖ

Для примера рассмотрим подземный гараж, который заглублен в землю на 5,5 метров, при уровне грунтовых вод в паводок, порядка -0,5 метра.

При расчете конструкции возможны различные варианты закрепления конструкции в грунте:

- 1. За счет утяжеления конструкции (увеличения веса фундаментной плиты).
- 2. За счет обустройства свай под фундаментом (это достаточно дорого и при слабых грунтах требует много свай).
- 3. За счет создания трения между стенками конструкции и грунтом (современные гидроизоляционные материалы делают коэффициент трения близким к нулю).
- 4. За счет расширения фундаментной плиты за границы проектируемого объекта (обычно в пределах 1,0 1,5 метров равномерно по периметру объекта).

РАСЧЕТ НА ВСПЛЫТИЕ

Ниже приводятся расчеты на всплытие гаража, при толщине фундаментной плиты 1,25 метра.

$$\gamma_w \cdot h_0 \cdot A \leq \gamma_{f1} \cdot G_{stb,c} + \gamma_{f2} \cdot \sum G_{stb,l} + \gamma_{f3} \cdot \sum G_{stb}$$

Где:

 $\gamma_w = 9.81 \, ^{\text{KH}} /_{\text{M}} - \text{удельный вес воды};$

 $h_0 = 3.52 + 1.25 = 4.77 \,\mathrm{M}$ расчетная высота напора воды, отсчитываемая от подошвы подземной части сооружения до максимального уровня подземных вод;

высота фундаментной плиты, м;

h — высота от верха фундамента до уровня грунтовых вод, м;

глубина приямков, м;

A- площадь подземной части сооружения: фундаментной плиты, остальной подземной части по стенам с утеплителям, приямков, м2.;

 $\gamma_{f1} = 0.9, \gamma_{f2} = 0.85, \gamma_{f3} = 0.65 -$ коэффициенты надежности по нагрузке;

G_{stb,c} — сумма нормативных значений постоянных вертикальных удерживающих нагрузок, включая собственный вес несущих конструкций сооружения, кН;

G_{stb,l} — сумма нормативных значений временных длительных удерживающих вертикальных нагрузок, включая вес полов и перегородок сооружения, грунта обратной засыпки над обрезами фундаментов и над подземной частью сооружения, кН;

 G_{stb} — сумма нормативных значений удерживающих вертикальных составляющих сил сопротивления всплытию в основании, включая силы трения, сопротивления свай выдергиванию, натяжения анкеров и др., кH;

Надо отметить, что конкретно в этом случае, конструктивно достаточно толщины фундаментной плиты 0,65 метра. Но при этом, при прочих равных, возникает не компенсированная сила порядка 500 тонн, которая выталкивает конструкцию наверх, что может привести к деформациям и растрескиваниям.

В результате увеличения толщины плиты на 600 мм, и учета всех действующих сил, получаем расчетную силу выталкивания (всплытия):

$$y_{10} \cdot h_0 \cdot A = 9.81 \cdot (1.25 \cdot 1070.339 + 3.52 \cdot 1038.691 + 23.04 \cdot 1.1 + 76.8 \cdot 1.2) == 50144.99 \text{ kH}$$

Сопротивление конструкции выталкиванию (всплытию), с учетом уступов фундаментной плиты (в нашем случае 300 мм по периметру) и учета всех действующих сил, составляет:

$$\gamma_{f\mathbf{1}} \cdot G_{stb,c} + \gamma_{f\mathbf{2}} \cdot \sum G_{stb,l} + \gamma_{f\mathbf{3}} \cdot \sum G_{stb} = 0.9 \cdot 44559.9\mathbf{9} + 0.85 \cdot 12103.0\mathbf{5} + 0.65 \cdot 1766.68\mathbf{4} = 51539.93 \; \mathrm{KH}$$

50144.99 кН < 51539,93 кН → условие выполняется.

Расчет показывает, что подземный (заглубленный) гараж гарантированно не всплывет под напором паводковых вод.

Источник - https://www.piterdevelopment.ru